Description# The Fibonacci numbers , commonly denoted F(n)
form a sequence, called the Fibonacci sequence , such that each number is the sum of the two preceding ones, starting from 0
and 1
. That is,
F(0) = 0, F(1) = 1
F(n) = F(n - 1) + F(n - 2), for n > 1.
Given n
, calculate F(n)
.
Example 1:
Input: n = 2
Output: 1
Explanation: F(2) = F(1) + F(0) = 1 + 0 = 1.
Example 2:
Input: n = 3
Output: 2
Explanation: F(3) = F(2) + F(1) = 1 + 1 = 2.
Example 3:
Input: n = 4
Output: 3
Explanation: F(4) = F(3) + F(2) = 2 + 1 = 3.
Constraints:
Solutions# Solution 1# 1
2
3
4
5
6
class Solution :
def fib ( self , n : int ) -> int :
a , b = 0 , 1
for _ in range ( n ):
a , b = b , a + b
return a
copy
1
2
3
4
5
6
7
8
9
10
11
class Solution {
public int fib ( int n ) {
int a = 0 , b = 1 ;
while ( n -- > 0 ) {
int c = a + b ;
a = b ;
b = c ;
}
return a ;
}
}
copy
1
2
3
4
5
6
7
8
9
10
11
12
class Solution {
public :
int fib ( int n ) {
int a = 0 , b = 1 ;
while ( n -- ) {
int c = a + b ;
a = b ;
b = c ;
}
return a ;
}
};
copy
1
2
3
4
5
6
7
func fib ( n int ) int {
a , b := 0 , 1
for i := 0 ; i < n ; i ++ {
a , b = b , a + b
}
return a
}
copy
1
2
3
4
5
6
7
8
function fib ( n : number ) : number {
let a = 0 ;
let b = 1 ;
for ( let i = 0 ; i < n ; i ++ ) {
[ a , b ] = [ b , a + b ];
}
return a ;
}
copy
1
2
3
4
5
6
7
8
9
10
11
12
impl Solution {
pub fn fib ( n : i32 ) -> i32 {
let mut a = 0 ;
let mut b = 1 ;
for _ in 0 .. n {
let t = b ;
b = a + b ;
a = t ;
}
a
}
}
copy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
/**
* @param {number} n
* @return {number}
*/
var fib = function ( n ) {
let a = 0 ;
let b = 1 ;
while ( n -- ) {
const c = a + b ;
a = b ;
b = c ;
}
return a ;
};
copy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
class Solution {
/**
* @param Integer $n
* @return Integer
*/
function fib ( $n ) {
if ( $n == 0 || $n == 1 ) {
return $n ;
}
$dp = [ 0 , 1 ];
for ( $i = 2 ; $i <= $n ; $i ++ ) {
$dp [ $i ] = $dp [ $i - 2 ] + $dp [ $i - 1 ];
}
return $dp [ $n ];
}
}
copy
Solution 2# 1
2
3
4
5
6
function fib ( n : number ) : number {
if ( n < 2 ) {
return n ;
}
return fib ( n - 1 ) + fib ( n - 2 );
}
copy
1
2
3
4
5
6
7
8
impl Solution {
pub fn fib ( n : i32 ) -> i32 {
if n < 2 {
return n ;
}
Self ::fib ( n - 1 ) + Self ::fib ( n - 2 )
}
}
copy