Description# Given two strings word1
and word2
, return the minimum number of operations required to convert word1
to word2
.
You have the following three operations permitted on a word:
Insert a character Delete a character Replace a character
Example 1:
Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')
Example 2:
Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')
Constraints:
0 <= word1.length, word2.length <= 500
word1
and word2
consist of lowercase English letters.Solutions# Solution 1: Dynamic Programming# We define f [ i ] [ j ] f[i][j] f [ i ] [ j ] as the minimum number of operations to convert w o r d 1 word1 w or d 1 of length i i i to w o r d 2 word2 w or d 2 of length j j j . f [ i ] [ 0 ] = i f[i][0] = i f [ i ] [ 0 ] = i , f [ 0 ] [ j ] = j f[0][j] = j f [ 0 ] [ j ] = j , i ∈ [ 1 , m ] , j ∈ [ 0 , n ] i \in [1, m], j \in [0, n] i ∈ [ 1 , m ] , j ∈ [ 0 , n ] .
We consider f [ i ] [ j ] f[i][j] f [ i ] [ j ] :
If w o r d 1 [ i − 1 ] = w o r d 2 [ j − 1 ] word1[i - 1] = word2[j - 1] w or d 1 [ i − 1 ] = w or d 2 [ j − 1 ] , then we only need to consider the minimum number of operations to convert w o r d 1 word1 w or d 1 of length i − 1 i - 1 i − 1 to w o r d 2 word2 w or d 2 of length j − 1 j - 1 j − 1 , so f [ i ] [ j ] = f [ i − 1 ] [ j − 1 ] f[i][j] = f[i - 1][j - 1] f [ i ] [ j ] = f [ i − 1 ] [ j − 1 ] ; Otherwise, we can consider insert, delete, and replace operations, then f [ i ] [ j ] = min ( f [ i − 1 ] [ j ] , f [ i ] [ j − 1 ] , f [ i − 1 ] [ j − 1 ] ) + 1 f[i][j] = \min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1 f [ i ] [ j ] = min ( f [ i − 1 ] [ j ] , f [ i ] [ j − 1 ] , f [ i − 1 ] [ j − 1 ]) + 1 . Finally, we can get the state transition equation:
f [ i ] [ j ] = { i , if j = 0 j , if i = 0 f [ i − 1 ] [ j − 1 ] , if w o r d 1 [ i − 1 ] = w o r d 2 [ j − 1 ] min ( f [ i − 1 ] [ j ] , f [ i ] [ j − 1 ] , f [ i − 1 ] [ j − 1 ] ) + 1 , otherwise
f[i][j] = \begin{cases}
i, & \text{if } j = 0 \
j, & \text{if } i = 0 \
f[i - 1][j - 1], & \text{if } word1[i - 1] = word2[j - 1] \
\min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1, & \text{otherwise}
\end{cases}
f [ i ] [ j ] = { i , if j = 0 j , if i = 0 f [ i − 1 ] [ j − 1 ] , if w or d 1 [ i − 1 ] = w or d 2 [ j − 1 ] min ( f [ i − 1 ] [ j ] , f [ i ] [ j − 1 ] , f [ i − 1 ] [ j − 1 ]) + 1 , otherwise
Finally, we return f [ m ] [ n ] f[m][n] f [ m ] [ n ] .
The time complexity is O ( m × n ) O(m \times n) O ( m × n ) , and the space complexity is O ( m × n ) O(m \times n) O ( m × n ) . m m m and n n n are the lengths of w o r d 1 word1 w or d 1 and w o r d 2 word2 w or d 2 respectively.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
class Solution :
def minDistance ( self , word1 : str , word2 : str ) -> int :
m , n = len ( word1 ), len ( word2 )
f = [[ 0 ] * ( n + 1 ) for _ in range ( m + 1 )]
for j in range ( 1 , n + 1 ):
f [ 0 ][ j ] = j
for i , a in enumerate ( word1 , 1 ):
f [ i ][ 0 ] = i
for j , b in enumerate ( word2 , 1 ):
if a == b :
f [ i ][ j ] = f [ i - 1 ][ j - 1 ]
else :
f [ i ][ j ] = min ( f [ i - 1 ][ j ], f [ i ][ j - 1 ], f [ i - 1 ][ j - 1 ]) + 1
return f [ m ][ n ]
copy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
class Solution {
public int minDistance ( String word1 , String word2 ) {
int m = word1 . length (), n = word2 . length ();
int [][] f = new int [ m + 1 ][ n + 1 ] ;
for ( int j = 1 ; j <= n ; ++ j ) {
f [ 0 ][ j ] = j ;
}
for ( int i = 1 ; i <= m ; ++ i ) {
f [ i ][ 0 ] = i ;
for ( int j = 1 ; j <= n ; ++ j ) {
if ( word1 . charAt ( i - 1 ) == word2 . charAt ( j - 1 )) {
f [ i ][ j ] = f [ i - 1 ][ j - 1 ] ;
} else {
f [ i ][ j ] = Math . min ( f [ i - 1 ][ j ] , Math . min ( f [ i ][ j - 1 ] , f [ i - 1 ][ j - 1 ] )) + 1 ;
}
}
}
return f [ m ][ n ] ;
}
}
copy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution {
public :
int minDistance ( string word1 , string word2 ) {
int m = word1 . size (), n = word2 . size ();
int f [ m + 1 ][ n + 1 ];
for ( int j = 0 ; j <= n ; ++ j ) {
f [ 0 ][ j ] = j ;
}
for ( int i = 1 ; i <= m ; ++ i ) {
f [ i ][ 0 ] = i ;
for ( int j = 1 ; j <= n ; ++ j ) {
if ( word1 [ i - 1 ] == word2 [ j - 1 ]) {
f [ i ][ j ] = f [ i - 1 ][ j - 1 ];
} else {
f [ i ][ j ] = min ({ f [ i - 1 ][ j ], f [ i ][ j - 1 ], f [ i - 1 ][ j - 1 ]}) + 1 ;
}
}
}
return f [ m ][ n ];
}
};
copy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
func minDistance ( word1 string , word2 string ) int {
m , n := len ( word1 ), len ( word2 )
f := make ([][] int , m + 1 )
for i := range f {
f [ i ] = make ([] int , n + 1 )
}
for j := 1 ; j <= n ; j ++ {
f [ 0 ][ j ] = j
}
for i := 1 ; i <= m ; i ++ {
f [ i ][ 0 ] = i
for j := 1 ; j <= n ; j ++ {
if word1 [ i - 1 ] == word2 [ j - 1 ] {
f [ i ][ j ] = f [ i - 1 ][ j - 1 ]
} else {
f [ i ][ j ] = min ( f [ i - 1 ][ j ], min ( f [ i ][ j - 1 ], f [ i - 1 ][ j - 1 ])) + 1
}
}
}
return f [ m ][ n ]
}
copy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
function minDistance ( word1 : string , word2 : string ) : number {
const m = word1 . length ;
const n = word2 . length ;
const f : number [][] = Array ( m + 1 )
. fill ( 0 )
. map (() => Array ( n + 1 ). fill ( 0 ));
for ( let j = 1 ; j <= n ; ++ j ) {
f [ 0 ][ j ] = j ;
}
for ( let i = 1 ; i <= m ; ++ i ) {
f [ i ][ 0 ] = i ;
for ( let j = 1 ; j <= n ; ++ j ) {
if ( word1 [ i - 1 ] === word2 [ j - 1 ]) {
f [ i ][ j ] = f [ i - 1 ][ j - 1 ];
} else {
f [ i ][ j ] = Math . min ( f [ i - 1 ][ j ], f [ i ][ j - 1 ], f [ i - 1 ][ j - 1 ]) + 1 ;
}
}
}
return f [ m ][ n ];
}
copy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/**
* @param {string} word1
* @param {string} word2
* @return {number}
*/
var minDistance = function ( word1 , word2 ) {
const m = word1 . length ;
const n = word2 . length ;
const f = Array ( m + 1 )
. fill ( 0 )
. map (() => Array ( n + 1 ). fill ( 0 ));
for ( let j = 1 ; j <= n ; ++ j ) {
f [ 0 ][ j ] = j ;
}
for ( let i = 1 ; i <= m ; ++ i ) {
f [ i ][ 0 ] = i ;
for ( let j = 1 ; j <= n ; ++ j ) {
if ( word1 [ i - 1 ] === word2 [ j - 1 ]) {
f [ i ][ j ] = f [ i - 1 ][ j - 1 ];
} else {
f [ i ][ j ] = Math . min ( f [ i - 1 ][ j ], f [ i ][ j - 1 ], f [ i - 1 ][ j - 1 ]) + 1 ;
}
}
}
return f [ m ][ n ];
};
copy