Description# Given the root
of a binary tree, return the preorder traversal of its nodes' values .
Example 1:
Input: root = [1,null,2,3]
Output: [1,2,3]
Example 2:
Input: root = []
Output: []
Example 3:
Input: root = [1]
Output: [1]
Constraints:
The number of nodes in the tree is in the range [0, 100]
. -100 <= Node.val <= 100
Follow up: Recursive solution is trivial, could you do it iteratively?
Solutions# Solution 1# 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def preorderTraversal ( self , root : Optional [ TreeNode ]) -> List [ int ]:
def dfs ( root ):
if root is None :
return
nonlocal ans
ans . append ( root . val )
dfs ( root . left )
dfs ( root . right )
ans = []
dfs ( root )
return ans
copy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private List < Integer > ans ;
public List < Integer > preorderTraversal ( TreeNode root ) {
ans = new ArrayList <> ();
dfs ( root );
return ans ;
}
private void dfs ( TreeNode root ) {
if ( root == null ) {
return ;
}
ans . add ( root . val );
dfs ( root . left );
dfs ( root . right );
}
}
copy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
vector < int > preorderTraversal ( TreeNode * root ) {
vector < int > ans ;
while ( root ) {
if ( ! root -> left ) {
ans . push_back ( root -> val );
root = root -> right ;
} else {
TreeNode * prev = root -> left ;
while ( prev -> right && prev -> right != root ) {
prev = prev -> right ;
}
if ( ! prev -> right ) {
ans . push_back ( root -> val );
prev -> right = root ;
root = root -> left ;
} else {
prev -> right = nullptr ;
root = root -> right ;
}
}
}
return ans ;
}
};
copy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func preorderTraversal ( root * TreeNode ) [] int {
var ans [] int
for root != nil {
if root . Left == nil {
ans = append ( ans , root . Val )
root = root . Right
} else {
prev := root . Left
for prev . Right != nil && prev . Right != root {
prev = prev . Right
}
if prev . Right == nil {
ans = append ( ans , root . Val )
prev . Right = root
root = root . Left
} else {
prev . Right = nil
root = root . Right
}
}
}
return ans
}
copy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function preorderTraversal ( root : TreeNode | null ) : number [] {
let ans = [];
if ( ! root ) return ans ;
let stk = [ root ];
while ( stk . length ) {
let node = stk . pop ();
ans . push ( node . val );
if ( node . right ) stk . push ( node . right );
if ( node . left ) stk . push ( node . left );
}
return ans ;
}
copy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std ::rc ::Rc ;
use std ::cell ::RefCell ;
impl Solution {
fn dfs ( root : & Option < Rc < RefCell < TreeNode >>> , res : & mut Vec < i32 > ) {
if root . is_none () {
return ;
}
let node = root . as_ref (). unwrap (). borrow ();
res . push ( node . val );
Self ::dfs ( & node . left , res );
Self ::dfs ( & node . right , res );
}
pub fn preorder_traversal ( root : Option < Rc < RefCell < TreeNode >>> ) -> Vec < i32 > {
let mut res = vec! [];
Self ::dfs ( & root , & mut res );
res
}
}
copy
Solution 2# 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def preorderTraversal ( self , root : Optional [ TreeNode ]) -> List [ int ]:
ans = []
if root is None :
return ans
stk = [ root ]
while stk :
node = stk . pop ()
ans . append ( node . val )
if node . right :
stk . append ( node . right )
if node . left :
stk . append ( node . left )
return ans
copy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List < Integer > preorderTraversal ( TreeNode root ) {
List < Integer > ans = new ArrayList <> ();
if ( root == null ) {
return ans ;
}
Deque < TreeNode > stk = new ArrayDeque <> ();
stk . push ( root );
while ( ! stk . isEmpty ()) {
TreeNode node = stk . pop ();
ans . add ( node . val );
if ( node . right != null ) {
stk . push ( node . right );
}
if ( node . left != null ) {
stk . push ( node . left );
}
}
return ans ;
}
}
copy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function preorderTraversal ( root : TreeNode | null ) : number [] {
let ans = [];
while ( root ) {
if ( ! root . left ) {
ans . push ( root . val );
root = root . right ;
} else {
let prev = root . left ;
while ( prev . right && prev . right != root ) {
prev = prev . right ;
}
if ( ! prev . right ) {
ans . push ( root . val );
prev . right = root ;
root = root . left ;
} else {
prev . right = null ;
root = root . right ;
}
}
}
return ans ;
}
copy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std ::rc ::Rc ;
use std ::cell ::RefCell ;
impl Solution {
pub fn preorder_traversal ( mut root : Option < Rc < RefCell < TreeNode >>> ) -> Vec < i32 > {
let mut res = vec! [];
if root . is_none () {
return res ;
}
let mut stack = vec! [];
while root . is_some () || stack . len () != 0 {
if root . is_some () {
let val = root . as_ref (). unwrap (). as_ref (). borrow (). val ;
let left = root . as_ref (). unwrap (). as_ref (). borrow_mut (). left . take ();
res . push ( val );
stack . push ( root );
root = left ;
} else {
root = stack . pop (). unwrap (). as_ref (). unwrap (). as_ref (). borrow_mut (). right . take ();
}
}
res
}
}
copy
Solution 3# 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def preorderTraversal ( self , root : Optional [ TreeNode ]) -> List [ int ]:
ans = []
while root :
if root . left is None :
ans . append ( root . val )
root = root . right
else :
prev = root . left
while prev . right and prev . right != root :
prev = prev . right
if prev . right is None :
ans . append ( root . val )
prev . right = root
root = root . left
else :
prev . right = None
root = root . right
return ans
copy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List < Integer > preorderTraversal ( TreeNode root ) {
List < Integer > ans = new ArrayList <> ();
while ( root != null ) {
if ( root . left == null ) {
ans . add ( root . val );
root = root . right ;
} else {
TreeNode prev = root . left ;
while ( prev . right != null && prev . right != root ) {
prev = prev . right ;
}
if ( prev . right == null ) {
ans . add ( root . val );
prev . right = root ;
root = root . left ;
} else {
prev . right = null ;
root = root . right ;
}
}
}
return ans ;
}
}
copy